
Realtme Knowledge Management (RKM) –
From an International Space Station (ISS) Point of View

Peter I. Robinson (NASA Ames/QSS Group) probinson@mail.arc.nasa.gov
William McDermott (NASA Ames) B.McDermott@nasa.gov
Rick Alena (NASA Ames) Richard.L.Alena@nasa.gov

Introduction
When problems occur on spacecraft, onboard and ground-based teams begin to analyze
the data. Timely access to relevant domain knowledge can mean the difference between a
nominal, degraded or failed mission. For a spacecraft as large as the ISS, the
documentation is well over 1 million pages not including reference materials in the form
of spreadsheets, diagrams, databases, source code, test results and other domain-specific
forms of knowledge. This is due in large part to the fact that ISS is being developed in
stages, over many years, with many international collaborators. We believe that tools
which can provide relevant and timely access to these documents and reference materials
will decrease anomaly resolution time with concurrent increases in safety.

Word Definition Description
1 Last Record Index Index Number - 16UI

 0 = Nothing in the buffer
 1-65535 = Record Index Number

2 Event Code that
identifies the event

Event Code - 16 UI
 0 = Not used as Event Code
 1-65535 = Event Code Number

3 Time at start of
frame that event
was logged (LSW)

The T-field consists of 4 octets of coarse time. These octets
are a set of binary counters, cascaded with the adjacent
counters. The value represents the elapsed time since

4 Time at start of
frame that event
was logged (MSW)

midnight 5-6 January 1980. The least significant bit (LSB) of
the least significant octet of coarse time is equal to 1 second.

5 State Bits 8-15 (Bit
15 = MSB)

Spare (set to zero)

 State Bits 6,7 Annunciation State 2E
 0 = Enabled
 1 = Suppressed
 2 = Inhibited
 3 = Undefined

 State Bit 5 Alarm State 1E
 0 = Return To Normal
 1 = In Alarm

 State Bit 4 Acknowledge State 1E
 0 = Acknowledged
 1 = Not Acknowledged

 State Bits 3-0 (Bit
0 = LSB)

Alarm Type State 4E
 0 = Spare/Don’t Care
 1 = Robotics Advisory
 2 = Advisory
 3 = Caution
 4 = Warning
 5 = Emergency Rapid Pressure Loss
 6 = Emergency Toxic Atmosphere
 7 = Emergency Fire/Smoke
 8-15 = Spare

 Netmark:

Diagnostic Data Server:
Serve realtime telemetry, e.g
Caution and Warning events

Serve ISS document,
e.g requirements doc.

Figure 1: Realtime Knowledge
diagnostic state which is mapped
to ISS Requirements documentatio

We are developing automated m
knowledge relevant to current s
analyzing state-transition signa
documentation relevant to a spe
structure and function of spacecr
state models can provide a r
presentation.

Diagnostic models consume the
spacecraft. Each potential space
ISStrider:
Serve diagnoses,
recoveries and
document pointers

Management Example Realtime telemetry determines
to documents, e.g. map Caution and Warning event [10]
n.

ethods to provide realtime access to spacecraft domain
pacecraft operational state. The method is based upon
tures in the telemetry stream. A key insight is that
cific failure mode or operational state is related to the
aft systems. This means that diagnostic dependency and
oadmap for effective documentation navigation and

telemetry and derive a high-level state description of the
craft state description is matched against the predictions

of models which were developed from information found in the pages and sections in the
relevant ISS documentation and reference materials. By annotating each model fragment
with the appropriate domain knowledge sources, from which it was derived, we can
develop a system which automatically selects those documents representing the domain
knowledge encapsulated by the models which compute the current spacecraft state. In
this manner, when the spacecraft state changes, the relevant documentation context and
presentation will change as well.

Architecture
The Realtime Knowledge Management (RKM) tool is developed as an integration of
three existing software tools: 1) the Diagnostic Data Server [1], a telemetry server which
provides a temporally organized set of telemetry, logs and data-dumps of the ISS over a
selected time window 2) the Netmark [2] document database which indexes documents
both on context (document token) and content (ISS token); and 3) the ISStrider [3]
model-based diagnostic tool [3] developed using L2 [6]which models both the hardware
and software aspects of the ISS Command and Data Handling (C&DH) system. These
three technologies are part of a set of engineering support tools which will be deployed at
NASA JSC in the next two years.

The flow of information for the RKM architecture follows the numbers in Figure 1: 1)
Telemetry queries are defined by the diagnostic tool ISStrider (or by the human operator),
2) telemetry is consumed by ISStrider which produces 3) diagnoses (in the future
recoveries as well) and 4) document queries. The document queries to Netmark produce
5) relevant documents. The telemetry, diagnoses and relevant documents are all
integrated in user-defined GUIs for rapid access by ISS flight engineers.

Diagnostic
Data Server:
telemetry,
dump database

telemetry, dumps 2

ISStrider:
model-based
diagnosis GUIs 1 diagnoses telemetry queries

3
document queries 4Netmark:

document,
database relevant documents 5

Figure 2: Realtime Knowledge Management (RKM) architecture which
integrates DDS [1], Netmark [2] and ISStrider[3].

Example
We demonstrate an example of the RKM architecture in Figure 1., on an example from
the ISS C&DH domain. The DDS serves a realtime Caution and Warning event to
ISStrider which maps this event to a portion of the ISS software requirements

specification (SRS) [4]. This example defines a direct mapping between telemetry and
corresponding documentation (see Implementation Section for details).

In general the mapping from a caution and warning event to domain documentation is
non-trivial and could require methods which reason about hidden state. For example, the
documents relevant to interpret a bus caution and warning event (e.g CW #5392), include
a hardware schematic, Bus Address Assignments Table, and the bus profile. Or for
example the documents relevant to interpret a computer (MDM) failure caution and
warning event (e.g. CW #5104) will require all document related to both the failed
execution of the hardware as well as the software. This would include documents for both
the hardware and software schematics, requirements specifications, documents which
define the Built-in Tests (BIT) and Power-On Self-Tests (POST) tests, documents which
define the rate monotonic scheduler and its tasks, and of course the source code itself
[8,9,10,11,12,13,14,15,16,17].

We are developing additional model-based methods based on internal state variables to
allow for indexing documents based upon the internal structure and topology of the
subsystem domain. Below we define the grammar required to implement the RKM
system. It will also apply to state-less dependency models such as TEAMS as well. For
TEAMS additional elements will be added to define tests and the source knowledge
required to model each test.

Implementation
The implementation is partitioned into three areas, 1) the grammar to describe the ISS
document dependencies and the interface into the Netmark document store/database 2)
the grammar to describe the ISStrider model-based diagnosis models and its links to the
document dependencies. Once the document dependencies are defined, we can annotate
our models with the source documents. Our models are based upon the ISStrider system,
which utilizes the L2[6] model-based diagnosis system. Our approach is also applicable
for many other diagnostic systems including the state-less structural dependency
TEAMS[7] tool. For TEAMS focus would be on defining the tests, while for L2 focus is
on defining the states of the models and its transitions. This is accomplished in L2
through the use of a model development interface which allows the user to annotate each
model fragment with documentation.

Document dependency grammar. To develop a system which can capture ISS specific
document types, we define a document dependency grammar. The grammar serves to
map the ISS document types to the Netmark tags for both context and content. Context
is defined as the sections of documents which are important to index to. We have
identified a preliminary set of ISS document contexts: 1) document name 2) section 3)
page-slide 4) figure 5) table 6) web- link 7) workbook 8) database 9)) source DDS
dataset. Content is defined with respect to domain specific features of the ISS domains.
We have identified a preliminary set of ISS document contents: 1) requirement number 2)
PUI 3) CSCI (software program identifier) 4) part number 5) procedure number.

<doc_dependency>::= <context>+<content>

<context>::=<document_name>|<section> | <page-slide> | <figure> |<table>|
 <web- link>|<workbook> |<database-table> | <DDS dataset>|…
<content>::= <requirement number>+ |<PUI> +|<CSCI>+ |<Part Number>+ |
 <procedure number>+|<CSCI>+

Model-based diagnosis grammar. An ISStrider Livingstone model is made up of a set
components which are connected via a set of connections. At each level, including the
model level, we can annotate with documentation dependencies which source documents
to model constructs.

 <model>::=<component>+ (<connection>)* <doc_dependency>*

Each component is defined at its boundaries by a finite set of ports, each of domain
specific types. Internal to each component, there is a finite-state machine which itself is
made up of a finite set of states. Directed and undirected transitions between the states are
defined. Executing the transitions in the forward direction is used to perform state
estimation, while executing the state transitions in the reverse direction is used to perform
regulation (recovery).

<component>::=<port>+ <finite_ state_machine> <doc_dependency>*
<finite_state_machine>::=<state>+ <transition>* <doc_dependency>*
<transition>::=<guard> <cost> <state> <state> <transition_type><doc_dependency>*
<state>::=<logical expression> <doc_dependency>*

Each connection between components are defined with a type, port-name and connection
specific documentation dependencies. Each port is defined by a type which identifies the
port as an observation, command or internal port as well the possible values which the
port can take. Each value is an element of the set of all possible values: {..vi,vj..}.

<connection> ::=<type> <port> <doc_dependency>*.
<port>::=<port-type> <value-type> <doc_dependency>
<port-type>::=[observation | command | internal] <doc_dependency>*
<value-type>::=[(discrete|continuous) <value>+] <doc_dependency>*
<value> ::= {..vi,vj..} <dependency>*

Discussion
At any point in time, there exists a ranked set of diagnoses from the ISStrider system.
Each of these diagnoses provide a state vector over the state of each component in the
system. By identifying the active model fragments, the RKM system, given the current
diagnosis state, can automatically present the user the documentation entailed by the
diagnosis.

Since the documentation is being driven by the telemetry, often it will occur that many
sets of documents are available. For example, our system will be able to automaticallyt
find the intersection of two requirements (raised by some event): requirement(x.x.x.x)

and requirement(y.y.y.y). First by a context search on requirement(x.x.x.x) in Netmark.
Netmark we return a set of pages over a range [lb1..ub1]. Then a content search on
requirement(y.y.y.y) over the range of pages [lb1..ub1]. This will return a more refined set
of pages [lb2 .. ub2] such that lb1 <= lb2 & lb2<= ub1.

References
[1] Fletcher, D. P., Alena, R. “A Scalable, Out-of-Band Diagnostics Architecture for
International Space Station Systems Support”, IEEE Aero 2003
[2] Maluf, David A. and Tran, Peter B., "NETMARK: Adding Hierarchical Object to
Relational Databases", Intelligent Systems Design and Applications (ISDA) 2003, Tulsa,
Oklahoma, Conference Proceedings, 2003.
[3] P. Robinson, M. Shirley, D. Fletcher, R. Alena, D. Duncavage, C. Lee, “Applying
Model-Based Reasoning to the FDIR of the Command & Data Handling Subsystem of
the International Space Station,” iSAIRAS 03 2003
[4] S684-11034F Boeing ISS Program “Software Requirements Specification for the R4
Command and Control (C&C) Multiplexor/Dimultiplexors (MDM) Computer Software
Configuration Item (CSCI)”, July 2003
[5] Schumann, J. Robinson P., [] or SUCCESS is Not Enough: Current Technology and
Future Directions in Proof Presentation , Workshop on "Future Directions in Deduction",
International Joint Conference of Automated Reasoning IJCAR 2001
[6] Kurien, J. , Nayak. P.P Back to the Future for Consistency-based Trajectory Tracking.
AAAI-97
[7] Deb, S., Domagala, C.,Ghosal, S.,Patterson-Hine A., Alena , R. Remote Diagnosis of the
International Space Station utilizing Telemetry Data SPIE April 2001
[8] D684-10500-04B CDH ADD Vols. 1-4.
[9] C&W Fault Trees: http://hsi.jsc.nasa.gov/Cwad/
[10] Owens, D. , Dempsey, R .Caution and Warning Systems Brief NASA JSC DF25
CDH 06/02
[11] S684-11032 ISS Software Requirements: R2,, Command and Control (C&C) MDM
(CSCI) 11/01
[12]D684-11106-01 ISS Command and Control Software , Software User’s Manual R2
10/01
[13] D684-10056-01K ISS Prime Contractor Software Standards and Procedures
Specification 12/00
[14] D684-10177-01F ISS Mission Build Facility Standard Output Definition
[15]NAS15-10000 Software Rqmts Spec for the MDM Boot and Diagnostics Firmware
of C&DH
[16]D684-11111-01 ISS Command and Control Software, Software Top Level Design
Document R3
[17] JSC 28721 User’s Guide for the Portable Computer System (PCS) ISS MOD 5/2001
[18] D684-11379-01 MADE Design Document 3/02

http://hsi.jsc.nasa.gov/Cwad/

	Introduction
	Architecture
	Example
	Implementation
	Discussion
	References

